
AOS-W 8.3.0.x

AP
IG

ui
de

Copyright Information

Alcatel-Lucent and the Alcatel-Lucent Enterprise logo are trademarks of Alcatel-Lucent. To view other
trademarks used by affiliated companies of ALE Holding, visit:

https://www.al-enterprise.com/en/legal/trademarks-copyright

All other trademarks are the property of their respective owners. The information presented is subject
to changewithout notice. Neither ALE Holding nor any of its affiliates assumes any responsibility for
inaccuracies contained herein. (2018)

Open Source Code

This product includes code licensed under theGNU General Public License, the GNU Lesser General
Public License, and/or certain other open source licenses.

https://www.al-enterprise.com/en/legal/trademarks-copyright

AOS-W 8.3.0.x | API Guide Contents | 3

Contents

Contents 3

Revision History 5

About this Guide 6

Related Documents 6

Contacting Support 6

Overview of Northbound Configuration APIs 7

Introduction 7

Structured Data- Schema and Data 7

Getting Started 8

Prerequisites 8

Interface 8

Login 8

Logout 9

Supported APIs and Components 10

Query Elements of GET 10

GET 11

SET 17

Multi-part SET 22

GETModifiers 25

Special GETQueries 34

Action Objects 39

Context/Location APIs 41

Overview 41

Types of Context/Location APIs 41

NBAPI Helper Process 43

4 | Contents AOS-W 8.3.0.x | API Guide

Configuration 43

Revision History
The following table lists the revisions of this document.

Revision Change Description

Revision 01 Initial release.

Table 1: Revision History

AOS-W 8.3.0.x | API Guide Contents | 5

AOS-W 8.3.0.x | API Guide About this Guide | 6

About this Guide

This document describes the strategy and procedure formigrating existing Alcatel-Lucent switch deployments
to Mobility Mastermanaged deployment and the support for context APIs in Mobility Master.

This chapter includes the following sections:

n Related Documents on page 6

n Contacting Support on page 6

Related Documents
The following guides are part of the documentation forMobility Master:

n AOS-W Release Notes

n AOS-WGetting Started Guide

n AOS-W User Guide

n AOS-W CLI Reference Guide

n AOS-WMigration Guide

n Alcatel-Lucent Mobility Master Licensing Guide

n Alcatel-Lucent Virtual Appliance Installation Guide

n Alcatel-Lucent Wireless Access Point Installation Guide

n Alcatel-Lucent Mobility Master Hardware Appliance Installation Guide

Contacting Support
Table 2: Contact Information

Contact Center Online

Main Site https://www.al-enterprise.com

Support Site https://support.esd.alcatel-lucent.com

Email ebg_global_supportcenter@al-enterprise.com

Service & Support Contact Center Telephone

North America 1-800-995-2696

Latin America 1-877-919-9526

EMEA +800 00200100 (Toll Free) or +1(650)385-2193

Asia Pacific +65 6240 8484

Worldwide 1-818-878-4507

https://www.al-enterprise.com/
https://support.esd.alcatel-lucent.com/
mailto:ebg_global_supportcenter@al-enterprise.com

AOS-W 8.3.0.x | API Guide Overview of Northbound Configuration APIs | 7

Chapter 1
Overview of Northbound Configuration APIs

Introduction
Prior to AOS-W 8.0.0.0, the only way a switch was configured was using command line interface (CLI) or switch
user interface (WebUI). This created hindrance to automation because the CLIs typically changed over time and
WebUI could not be automated easily becausemost of the pages were hand crafted. TheWebUI also used CLI
to communicate to the back end, which was hard coded and not easily extensible.

Another issuewith the old architecturewas that the show command of configuration was used to display the
config pages (GET request), which used to come from apps. The appsmaintained the configuration presented
to them in their own proprietary structures and the show command output was inconsistent across apps. So,
user had to knowwhich show command to use, how to parse it, and get the output. If this output changed
over time, the scripts also had to change as not all outputs were generated using structured data. GET and SET
in a structured format for all configuration was themain requirement of implementing the JSONmodel.

Structured Data- Schema and Data
One of themain reasons for providing JSON interface is that all the configuration can now beGET and SET
using structured data Application Program Interfaces (APIs). Structured datameans that all the data is
organized in a structure format (there can bemany structures) where all elements that belong to one data type
follows the same datamodel. This is achieved by separating schema fromdata.

Schema is a datamodel representation (in JSON format), which tells the user theway to interpret the data. It
lists the complete detail of each and every parameter or token that a particular configuration element can take.
For example, the type (integer, short integer, character, string, IP address, IPv6 address, MAC address etc),
minimum value, maximum value, default value (when the user doesn’t provide any value), optional or
mandatory.

Data is the representation of the configuration state of theMobility Master in JSON format. It arranges the
data in the same order as the schema and can be interpreted as schema tells it to be interpreted. Theremay be
parameters or tokens, which aremandatory in schema to be omitted in data if their presence in schema is to
only convey the relationships between various parameters or tokens.

Schema (also known asMetadata) and data complete the structured data representation.

AOS-W 8.3.0.x | API Guide Getting Started | 8

Chapter 2
Getting Started

Prerequisites
n Complete understanding of the configuration hierarchy.

n Knowledge of the CLIs is required for the first time as all objects are based on the equivalent CLIs.

n Complete documentation of various containers and objects that are supported in Mobility Master running
AOS-W 8.0.0.0 is available— TheURL of this document is https://<MM-IP>:4343/api.

The user can runGET or SET commands fromAPI page on theMobility Master or can run equivalent curl
command from any machine supporting curl commands. curl commands in the document are examples
to run the query.

Interface
The interface used to access the configuration elements onMobility Master isHTTPS. HTTPS is used because it
provides transport layer security, and hence the passwords and other secret information can be sent over in
plain text without worrying about anyone interfering. The same interface is used for all managed devices
irrespective of it being a hardware-based or Virtual Machine (VM) based platform. Also, themanaged device's
role does not change this interface. So, the same interfaceworks forMobility Master, managed device, and
stand-alone switch.

Login
To access any configuration element -- weather it isGET or SET on the object, the user first has to login to the
Mobility Master.

The following is a sampleCURL command used by the user to log in to theMobility Master:
curl --insecure -c "aruba-cookie" -d "username=<username>&password=<password>"

https://<controller-ip>:4343/v1/api/login

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

Parameters
The following table shows the parameters used in the login command:

Parameters Description

<username> Username of the user.

<password> Password of the user.

<controller-ip> IPv4 address of the Mobility Master.

Table 3: Login Command Parameters

The following is an example response for a failed login:
{"_global_result": {"status":"1", "status_str": "Unauthorized request, authentication

failed"}}

9 | Getting Started AOS-W 8.3.0.x | API Guide

The following is an example response for a successful login:
{"_global_result": {"status":"0", "status_str": "You've logged in successfully.",

"UIDARUBA":"8e9b0e1a-4de0-4ace-a0c1-007ef267fa4b"}}

TheUIDARUBA token has to be used in allGET or SET queries after the login.

Once logged in, the user can runGET and SET requests on containers or objects.

Logout
To close all the interactions, you need to logout from theMobility Master.

The following is a sampleCURL command used by the user to log out of theMobility Master:
curl -c "aruba-cookie" https://<controller-ip>:4343/v1/api/logout

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

Parameters
The following table shows the parameters used in the logout command:

Parameters Description

<controller-ip> IPv4 address of the Mobility Master.

Table 4: Logout Command Parameters

The following is an example response for a successful logout:
{"_global_result": {"status":"0", "status_str": "You've been logged out successfully.",

"UIDARUBA":"(null)"}}

Once logged out, no GET or SET requests can be run on theMobility Master.

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 10

Chapter 3
Supported APIs and Components

Query Elements of GET
There two different elements which can be queried for GET are containers and objects.

Containers
A container defines a logical group of objects and sub-objects. Theway these objects and sub-objects are
grouped is based on the configuration they modify. To get the complete list of containers available to be
queried, use the following URL:
curl –b "aruba-cookie" –i 'https://<controllerip>:

4343/v1/configuration/container?UIDARUBA=<session-cookie>'

The UIDARUBA=<session-cookie> parameter needs to be added for all the queries of GET/ SET to address XSRF
vulnerabilities.

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

Putting a "/" after container will assume that a container name is being queried and will return invalid data as it will
not find any container with blank name.

Containers terminology is only available via JSON REST APIs and not via CLIs.

The following table shows the all containers available in system along with the objects which they return:

Container Name Description

AP-Provisioning AP Provisioning, AP Whitelist, Provisioning Profile Objects

Authentication Authentication Server, Authentication, Survivability, Captive Portal, 801.X, Guest
Provisioning, Kerberos, NTLM, Radius, Server Group, TACACS, WISPR Objects.

Crypto Certificate Management, IPsec maps, Site2Site maps, VIA Maps, VPN Objects

External-Services External Syslog Interface, ClearPass Policy Manager, Palo Alto Networks Management
Objects

Hierarchy Device Add/Delete/Move, Folder Add/Delete/Move Objects

Interfaces Physical/Logical/Loopback Interfaces, Tunnels and USB/Modem Interfaces Objects

L2L3-Protocols IGMP/MLD Snooping, OSPF, STP Objects

LoadBal-Redun Clustering, High Availability, VRRP Objects

Pools DHCP Pools, NAT Pools, Tunnel Pools Objects

Roles-Policies ACLs, AppRF, Bandwidth Contracts, Firewall, PBR, Roles, WebCC Objects

Table 5: Containers

11 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

Container Name Description

Services ALE, AirGroup, Lync, Openflow, SDN Objects

WAN Compression, Health Check, Uplink Management Objects

WLAN AP Group, Client Match, Hotspot, IDS, Mcell, Mesh, Mobility, RF, SSID, Virtual AP
Objects

Table 5: Containers

Objects
Objects are identified by a name commonly known as Object Name or objname in short. One object is a logical
combination of several parameters and optionally sub-objects, which require the presence of amain object. To
get the complete list of objects available to be queried, use the following URL:
curl -b "aruba-cookie" -i 'https://<controllerip>:

4343/v1/configuration/object?UIDARUBA=<session-id>'

There are over 1000 objects that can be queried, so this request may take some time to execute.

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

Putting a "/" after object will assume that a object name is being queried and will return invalid data as it will not find
any object with blank name.

Various keys, shared secrets, passwords (with exception of logon users of any Alcatel-Lucent device) that are part of
object data will be presented in clear-text format when anHTTP GET request is issued for that object.

GET
GET request can be sent to get the configuration data for an object(s) or container(s).

Syntax
To get the list of various objects, use the following command:
curl -b "aruba-cookie" -X GET -i 'https://<controllerip>:

4343/v1/configuration/object?UIDARUBA=<session-id>'

To get the list of various containers, use the following command:
curl -b "aruba-cookie" -X GET -i 'https://<controllerip>:

4343/v1/configuration/container?UIDARUBA=<session-id>'

Once the object or the container for which GET query has to be sent is known, use the following GET request:
curl -b "aruba-cookie" -X GET -i 'https://<controller-

ip>:4343/v1/configuration/object/<objectname>?

config_path=<config-node>&UIDARUBA=<session-id>'

curl -b "aruba-cookie" -X GET -i 'https://<controllerip>:

4343/v1/configuration/container/<container-name>?config_path=<config-node>&

UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

If config_path is not specified, /mm/mynode will be assumed.

Parameters

Parameters Description

<controller-ip> IPv4 address of the Mobility Master where the configuration element should be got
from.

<config-node> The hierarchy (complete config-node or config-path) from which the information
should be got from.
Onmanaged device this will be restricted to /mm/mynode, while on a stand-alone
switch, this will be restricted to /mm and /mm/mynode

<container-name> Name of the container which needs to be queried.

<object-name> Name of the object which needs to be queried.

<session-id> Session ID for this session.

Table 6: Get Command Parameters

Sample Output
This returns a JSON payload which looks like the following output. This output is for object "int_vlan", a data-
type filter (see Data-Type Filters on page 30 formore details) of "meta-n-data" is used to put both schema and
data in perspective:
{

"_meta": {

"int_vlan": {

"_mappings": {

"root": "int_vlan",

"key_list": {

"id": "id",

"int_vlan_shut": "int_vlan_shut",

"int_vlan_ip.ipparams": "int_vlan_ip.ipparams",

"int_vlan_ip.ipaddr": "int_vlan_ip.ipaddr",

"int_vlan_ip.ipmask": "int_vlan_ip.ipmask",

"int_vlan_ip.dhcp-client": "int_vlan_ip.dhcp-client",

"int_vlan_ip.client-id": "int_vlan_ip.client-id",

"int_vlan_ip.cid": "int_vlan_ip.cid",

...,

"int_vlan_ip_ospf_msg_digest_key.value": "int_vlan_ip_ospf_msg_digest_key.value",

"int_vlan_ip_ospf_msg_digest_key.passwd": "int_vlan_ip_ospf_msg_digest_

key.passwd",

"int_vlan_ip_ospf_area.area-id": "int_vlan_ip_ospf_area.area-id"

}

},

"_operations": [

"GET",

"SET"

],

"_keys": "id",

"_inst_key": "id",

"id": {

"_min": 1,

"_type": "INT",

"_help": "Vlan interface number",

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 12

13 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"_max": 4094

},

"int_vlan_shut": {},

"int_vlan_ip": {

"ipparams": {

"_type": "enum",

"_children": [

"ipaddrmask",

"dhcp_opt",

"pppoe"

]

"_enum_type": "mixed"

},

"ipaddrmask": {

"_parent": "ipparams",

"_children": [

"ipaddr",

"ipmask"

]

},

"ipaddr": {

"_parent": "ipaddrmask",

"_type": "IPADDR",

"_help": "A.B.C.D IP address"

},

"ipmask": {

"_parent": "ipaddrmask",

"_type": "IPADDR",

"_help": "A.B.C.D IP subnet mask"

},

"dhcp_opt": {

"_parent": "ipparams",

"_children": [

"dhcp-client"

]

},

"dhcp-client": {

"_type": "keyword",

"_parent": "dhcp_opt",

"_children": [

"client-id"

]

},

"client-id": {

"_type": "keyword",

"_parent": "dhcp-client",

"_optional": true,

"_children": [

"cid"

]

},

"cid": {

"_min": 1,

"_type": "STRING",

"_max": 255,

"_parent": "client-id",

"_optional": true,

"_help": "ASCII string to be sent in the options"

},

"pppoe": {

"_type": "keyword",

"_parent": "ipparams"

}

},

"int_vlan_ipv6_addr": {

"_keys": "eui-64,ipaddr",

"_inst_key": "ipaddr",

"eui-64": {

"_type": "keyword",

"_optional": true

},

"ipaddr": {

"_type": "IP6PREFIX",

"_help": "IPv6 prefix"

}

},

...,

...,

"int_vlan_mtu": {

"value": {

"_min": 1280,

"_type": "INT",

"_max": 1500,

"_default_val": 1500,

"_help": "MTU value"

}

}

}

},

"_data": {

"int_vlan": [

{

"id": 95,

"int_vlan_ip": {

"ipaddr": "95.95.1.1",

"ipparams": "ipaddrmask",

"ipmask": "255.255.255.0"

},

"int_vlan_routing": {

"_present": true,

"_flags": {

"default": true

}

},

"int_vlan_ndra_hlimit": {

"_flags": {

"default": true

},

"value": 64

},

"int_vlan_ndra_interval": {

"_flags": {

"default": true

},

"value": 600

},

"int_vlan_ndra_ltime": {

"_flags": {

"default": true

},

"value": 1800

},

"int_vlan_ndra_mtu": {

"_flags": {

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 14

15 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"default": true

},

"value": 1500

},

"int_vlan_nd_reachtime": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_nd_rtrans_time": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_mtu": {

"value": 1390

},

"int_vlan_suppress_arp": {

"_present": true,

"_flags": {

"default": true

}

}

},

{

"id": 96,

"int_vlan_ip": {

"dhcp-client": true,

"ipparams": "dhcp_opt"

},

...,

"int_vlan_mtu": {

"value": 1400

}

},

{

"id": 97,

...,

"int_vlan_mtu": {

"value": 1290

}

},

{

"id": 98,

...,

"int_vlan_ip": {

"cid": "123",

"ipparams": "dhcp_opt",

"client-id": true,

"dhcp-client": true

}

},

{

"id": 99,

...,

"int_vlan_mtu": {

"value": 1360

},

"int_vlan_suppress_arp": {

"_present": true,

"_flags": {

"default": true

}

}

}

]

}

}

Understanding the Output
The following is the explanation for each element:

n The initial elements in the response have heading called "_meta" and "_data". Before delving into what each
one of these headingsmean (which is self explanatory), know that any name starting with underscore "_" is
system generated and has a special meaning, which is global rather than per command basis.

n "_meta" specifies themeta or schema for this section. The following is a detailed explanation of each
schema element.

l The first order elements are all objects which belong to the container name. In case of single object, it will
just list the object name there. In this example, we have only one object named "int_vlan" -- which gets all
configuration elements for "interface vlan" object.

l "_mappings" field specifies all the objects and their parameters inside this particular object. The "root" is
always the object itself and "key_list" carries the rest of elements and how to access them from Javascript
objects.

l "_inst_key" specifies which parameters inside this object are used to form a unique key identifying one
instance of an object. This field is present only for objects which can havemultiple instances -- e.g.,
VLANs, interfaces, aaa profiles etc ...

l "_keys" tells what all fields are significant in this object. This is only meant for working of WEBUI (which
also uses JSON Interface) and can be safely ignored for pure API use.

l “_operations” specifies all operations that are permitted on that object. It can have a value of “GET”
and/or “SET”

l Other fields which do not start with underscore "_" are parameters or sub-objects of thismain object.
Each object has one ormore of the following attributes:

l "_type": This tells the type of the attribute of the parameter. If this attribute ismissing for any
parameter or subobject, it means that this is just for structuring data. This need not be specified by
the user ormay ormay not come from theMobility Master.

l "_max", "_min": These gives the limits of the parameter. If the type is Integer or anything with a
number, it specifiesmaximumandminimumnumbers which can be entered. If it's type is "string", it
specifiesmax andmin length of string respectively.

l "_optional": Specifies that this parameter is not a required parameter. All parameters with a "_type"
which are not marked "_optional" are all required parameters.

l "_parent": Specifies the parent "parameter" of this parameter. Used only for nested parameters. If
this field is not present means that the object parameter is not a nested one.

l "_children": Specifies that this parameter is a nested one and containsmultiple children parameters
specified by the value of this tag. "_type" argument will help in determining if all the children
parameters need to be specified or only one of them (in case it's of type enumwhich is same as
OneOf type in Netconf model.

l "_enum_type": Specifies if the parameter is of "enum" type, then are all the values of the enumof
same type. For example, the values are "ui_dropbox" (for static strings) and "mixed" (for dynamic
strings).

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 16

17 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

l If the parameter contains another complex object(s) inside it without a "_type" or "_parent" or "_children"
tokens, then it's a subobject which is different fromnested parameter. All nested parameters have to be
specified together but sub-object is totally independent and can be specified or not.

n "_data" specifies the data or configuration elements from theMobility Master. Now lets go into details
about each data element.

l Aswith the "_meta", the first thing is the object name for which the values are present below.

l If the object can havemultiple instances, then it's value is an array of single objects -- each entry in the
array is an individual instance. If it's a single instance object, then all parameters are present right there.

l For sub-object inside an object, it is present like another object inside themain object. Each sub-object
has its own elements but cannot exist without themain or top-level object.

l Each object's parameters are then specified using "Tag" and "Value" nomenclature. No hierarchy exists
(flat tag-value kind of parameters) between various parameters -- not even nested parameters -- One
caveat is that nested Objects' parameters are specified as a separate object in themain object. "_meta"
specifies how the nesting should be done.

l "_flags": This is a special field in each object/sub-obj level which specifies details about the data. If none
of these flag types are specified (flags are empty), then this structuremay bemissing. The various values
possible inside are:

l "inherited": Specifies that this configuration element has been inherited from the hierarchy above. It
means that the configuration present here has been configured on a node above this and not at this
node.

l "readonly": Species that this configuration element is readonly -- it can't be edited. It can only be
deleted.

l "undeletable": Specifies that this configuration element can't be deleted -- it can however be edited.

l "pending": Specifies that this configuration hasn't been saved in flash and has not yet been pushed to
apps.

l "default": Specifies that the configuration is part of factory default configuration or is generated as
default by the system.

l "system": Specifies that the configuration is system generated.

Additionally, "Filters" can also be sent to filter data or url parameter options can be used to sort, count and
paginate the data in case there is toomuch data. This will be explained in later sections.

SET
A SET request is sent in case a new data has to be added, or the old data has to be eithermodified or deleted
(we currently do not support HTTP DELETE and HTTP PUT operations). The same is achieved by sending HTTP
POST request using the curl command.

Syntax
curl -b "aruba-cookie" -X POST -i 'https://<controller-

ip>:4343/v1/configuration/object?config_

path=/md/11:22:33:aa:bb:cc&UIDARUBA=<session-cookie>' -d @<set-payload-file>

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

You can send as many objects as you want in a request as long as the complete request does not exceed 1 MB.

Set request is best effort. It is not all or none. It can have a partially applied configuration. Look at the payload result
for details on what succeeded and what failed.

Parameters

Parameters Description

<controller-ip> IPv4 address of the Mobility Master where the configuration element should be got
from.

<session cookie> Session cookie for this session.

<set-payload-file> File containing the JSON payload which can be set to.

Table 7: Set Command Parameters

Sample Configuration or Payload File
The following is the sample file for setting the "int_vlan" object:
{

"int_vlan": [

{

"id": "199",

"_action" : "add",

"int_vlan_ip": {

"ipaddr": "100.1.1.1",

"ipmask": "255.0.0.0",

"_action" : "add"

},

"int_vlan_mtu": {

"value": "1300",

"_action": "add"

}

},

{

"id": 198,

"_action" : "add",

"int_vlan_ip": {

"ipaddr": "111.1.1.1",

"ipmask": "255.0.0.0",

"_action": "add"

},

"int_vlan_mtu": {

"value": "1400",

"_action": "add"

}

},

{

"id": 197,

"_action" : "add",

"int_vlan_ip_helper": [

{

"address": "101.1.1.1",

"_action": "add"

},

{

"address": "102.1.1.1",

"_action": "add"

},

{

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 18

19 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"address": "103.1.1.1",

"_action": "add"

},

{

"address": "104.1.1.1",

"_action": "add"

}

]

},

{

"id": "196",

"_action" : "add",

"int_vlan_ip": {

"dhcp-client": true,

"_action": "add"

}

},

{

"id": "95",

"_action": "add"

}

]

}

Understanding SET Request and Response
n "config-path": This specifies the node path in the configuration hierarchy at which this configuration should

go to. In this example it says: "/md/11:22:33:aa:bb:cc" is the configuration node path. That means device
name is "11:22:33:aa:bb:cc" and it is located under "/" node in the configuration hierarchy.

n Next comes the "data", which contains the data to be set. The details on data are below:

l The "data" contains a bunch of objects, which needs to be set. Each object's name comes first.

l Each object contains either an array of instances (very similar to GET request) if there can bemultiple
instances of an object or directly an object for single instance object or you want to configure only one
instance of amulti-instance object.

l Every object and sub-object can optionally contain another field called "_action”. It tells about what
should be donewith the object. Absence of this parametermeans that the user wants to add/modify the
configuration. This field ismandatory if trying to delete any configuration. The various values it can take
is:

l "add" - add this new object and if already present, it will replace the old object with new.

l "delete" - delete the instance of amulti-instance object or delete the full object for a single instance
object.

l "noop" - No action is required for this object. This value should ideally never be used.

This returns the same JSON payload with result value and global result flag indicating what succeeded and what
didn't.
{

"int_vlan": [

{

"id": "199",

"_action": "add",

"int_vlan_ip": {

"ipaddr": "100.1.1.1",

"ipmask": "255.0.0.0",

"_action": "add",

"_result": {

"status": 0,

"status_str": ""

}

},

"int_vlan_mtu": {

"value": "1300",

"_action": "add",

"_result": {

"status": 0,

"status_str": ""

}

},

"_result": {

"status": 0,

"status_str": ""

}

},

{

"id": 198,

"_action": "add",

"int_vlan_ip": {

"ipaddr": "111.1.1.1",

"ipmask": "255.0.0.0",

"_action": "add",

"_result": {

"status": 0,

"status_str": ""

}

},

"int_vlan_mtu": {

"value": "1400",

"_action": "add",

"_result": {

"status": 0,

"status_str": ""

}

},

"_result": {

"status": 0,

"status_str": ""

}

},

{

"id": 197,

"_action": "add",

"int_vlan_ip_helper": [

{

"address": "101.1.1.1",

"_action": "add",

"_result": {

"status": 1,

"status_str": "IP Address not set on the Vlan Interface.\n"

}

},

{

"address": "102.1.1.1",

"_action": "add",

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

},

{

"address": "103.1.1.1",

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 20

21 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"_action": "add",

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

},

{

"address": "104.1.1.1",

"_action": "add",

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

}

],

"_result": {

"status": 0,

"status_str": ""

}

},

{

"id": "196",

"_action": "add",

"int_vlan_ip": {

"dhcp-client": true,

"_action": "add",

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

},

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

},

{

"id": "95",

"_action": "add",

"_result": {

"status": 2,

"status_str": "Error detected in previous object. Bypassing this object."

}

}

],

"_global_result": {

"status": "1",

"status_str": "IP Address not set on the Vlan Interface.\n"

}

"_global_result": {

 "status": "1",

 "status_str": "IP Address not set on the Vlan Interface.\n",

“_pending” : 0

}

}

The response payload is very identical to the SET payload with an additional field with each object and sub-
object called "_result", which carries the result information. This is composed of two sub-objects: "status" and
"status_str". If the "status" is 0, it is successful execution of the action specified. Any notice/output from the
result is provided in the "status_str" which ismostly empty in cases of SUCCESS. In case the "status" is non-
zero, it carries an errormessage in the "status_str" for the executioner of the API. Similarly to get the status of

the complete query, there is a field called "_global_result" which returns the first error which happened or
SUCCESS. There is another field, which is present in global result but not present in per object results – “_
pending”, the value of which can be 1 or 0. 1 means that the config node for which set request was run, is now
in pending state. 0 means that it is not in pending state (in committed state).

The SET request is best effort and in case of first failure, others in the same block are not even tried. The error
in such casewill be "Error detected in previous object. Bypassing this object".

Multi-part SET
Multiple SET/POST requests can also be concatenated in onemessage. Each block is treated as independent
request. So, even though setting of one object fails in one block, the other blocks will still continue to be
processed.

Here is a samplemulti-part SET Request:
{

"_list":[

[

{

"ids_dos_prof":[

{

"_action" : "add",

"profile-name":"AAA"

},

{

"_action" : "add",

"profile-name" : "pA"

}

]

},

{

"ids_impersonation_prof": [

{

"_action" : "add",

"profile-name":"AAA"

}

]

},

{

"ids_signature_matching_prof":[

{

"_action" : "add",

"profile-name":"AAA"

},

{

"_action": "add",

"profile-name" : "pA"

}

]

}

],

[

{

"ids_dos_prof":[

{

"_action" : "add",

"profile-name":"AAA2"

},

{

"_action" : "add",

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 22

23 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"profile-name" : "pA2"

}

]

},

{

"ids_impersonation_prof": [

{

"_action" : "add",

"profile-name":"AAA2"

}

]

},

{

"ids_signature_matching_prof":[

{

"_action" : "add",

"profile-name":"AAA2"

},

{

"_action": "add",

"profile-name" : "pA2"

}

]

}

]

]

}

In above payload each element in "_list" is an independent SET request. The following is the response to this
API:
{

"_list": [

[

{

"ids_dos_prof": [

{

"_action": "add",

"profile-name": "AAA",

"_result": {

"status": 0,

"status_str": ""

}

},

{

"_action": "add",

"profile-name": "pA",

"_result": {

"status": 0,

"status_str": ""

}

}

]

},

{

"ids_impersonation_prof": [

{

"_action": "add",

"profile-name": "AAA",

"_result": {

"status": 0,

"status_str": ""

}

}

]

},

{

"ids_signature_matching_prof": [

{

"_action": "add",

"profile-name": "AAA",

"_result": {

"status": 0,

"status_str": ""

}

},

{

"_action": "add",

"profile-name": "pA",

"_result": {

"status": 0,

"status_str": ""

}

}

]

},

{

"_global_result": {

"status": "0",

"status_str": "Success"

}

}

],

[

{

"ids_dos_prof": [

{

"_action": "add",

"profile-name": "AAA2",

"_result": {

"status": 0,

"status_str": ""

}

},

{

"_action": "add",

"profile-name": "pA2",

"_result": {

"status": 0,

"status_str": ""

}

}

]

},

{

"ids_impersonation_prof": [

{

"_action": "add",

"profile-name": "AAA2",

"_result": {

"status": 0,

"status_str": ""

}

}

]

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 24

25 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

},

{

"ids_signature_matching_prof": [

{

"_action": "add",

"profile-name": "AAA2",

"_result": {

"status": 0,

"status_str": ""

}

},

{

"_action": "add",

"profile-name": "pA2",

"_result": {

"status": 0,

"status_str": ""

}

}

]

},

{

"_global_result": {

"status": "0",

"status_str": "Success"

}

}

]

],

"_global_result": {

"status": "0",

"status_str": "Success"

}

}

GET Modifiers
The output data which is retrieved with GET query may be huge andmay require some actions on it. For this
reason, modifiers are designed on theGET query. This can also be achieved by putting URL parameters (query-
params) in theURL, as shown below:
curl -b "aruba-cookie" -X GET -i 'https://<controllerip>:

4343/v1/configuration/container/<container-name>?config_path=<config-

node>&<queryparams>&UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

Basic Filters (Key/Value Filters)
Basic filters are one themainmodifiers which reduces the amount of data fromGETQuery. There are two
types of basic filters: object and data. This filter is also known as key/value filter or filter, as it takes keys and/or
values for applying the filter.

Object filters can filter schema and data information based on the objects specified.

Data filter only filters the data being returned based on certain values for the various fields.

The following is an example of a basic filter:

curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&filter=<list_of_filters>&UIDARUBA=<session-id>'

Object Filter
An object filter limits which objects or which sub_objects should be present in the response.

This filter cannot be applied on individual parameters within an object or a sub-object. Also, there can only be one
object filter for every request. These cannot be concatenated.

The following is an example of an object filter:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-node>&filter=

[{"OBJECT" : { "<oper>" : <list-of-parameters> } }]&UIDARUBA=<session-id>'

Parameters

Parameters Description

"OBJECT" This specifies that this filter is of type object.

<oper> This specifies what operation should be applied on the values following this. Currently,
it can carry the following two values:
n $eq: matches one of the values
n $neq: does not match any of the values

<list_of_parameters> The list following <oper> specifies the values which need to be filtered based on the
operation.

<session-id> Session ID for this session.

Table 8: Object Filter Parameters

The following sample request shows how to return sub-objects of "ip address" and "mtu" value configured for
all interface VLAN at this particular node (or above in hierarchy):
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-node>&filter=

[{"OBJECT" : { "$eq" : ["int_vlan.int_vlan_ip", "int_vlan.int_vlan_mtu"] } }

]&UIDARUBA=<session-id>'

The following is the response to the above request:
{

"_data": {

"int_vlan": [

{

"id": 98,

"int_vlan_ip": {

"ipaddr": "98.1.1.1",

"ipparams": "ipaddrmask",

"ipmask": "255.0.0.0"

},

"int_vlan_mtu": {

"value": 1400

}

},

{

"id": 95,

"int_vlan_mtu": {

"_flags": {

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 26

27 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"default": true

},

"value": 1500

}

},

{

"id": 99,

"int_vlan_ip": {

"ipaddr": "99.1.1.1",

"ipparams": "ipaddrmask",

"ipmask": "255.0.0.0"

},

"int_vlan_mtu": {

"value": 1300

}

},

{

"id": 97,

"int_vlan_ip": {

"ipaddr": "97.1.1.22",

"ipparams": "ipaddrmask",

"ipmask": "255.255.255.0"

},

"int_vlan_mtu": {

"_flags": {

"default": true

},

"value": 1500

}

},

{

"id": 96,

"int_vlan_ip": {

"dhcp-client": true,

"ipparams": "dhcp_opt"

},

"int_vlan_mtu": {

"value": 1280

}

}

]

}

}

Data Filters
Any filter which is not an object filter is a data filter by default. It filters out the configuration elements
configured on the system. You can concatenatemultiple data filters in one request.

The following is a sample data filter:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-node>&filter=

[{"<param-name" : { "<oper>" : <list-of-values> } }]&UIDARUBA=<session-id>'

Parameters

Parameters Description

<param-name> Fully qualified name of the parameter on values of which filter needs to be applied.

<oper> This specifies what operation should be applied on the values following this. Currently,
it can carry the following two values:
n $eq: matches one of the values
n $neq: does not match any of the values
n $gt: matches a value which is greater than the filter
n $gte: matches a value which is greater than or equal to the filter
n $lt: matches a value which is less than the filter
n $lte: matches a value which is less than or equal to the filter
n $in: pattern matches the filter value. E.g., if filter says “ap”, “default-ap” and “ap-

grp1” will both match
n $nin: pattern does not match the filter. Opposite of $in

<list_of_values> The list following <oper> specifies the values which need to be filtered based on the
operation.

<session-id> Session ID for this session.

Table 9: Data Filter Parameters

The following sample request shows a data filter wherewewant to get details of interface VLANs 95 and 96:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-node>&filter=

[{"int_vlan.id" : { "$eq" : [95, 96] } }&UIDARUBA=<session-id>'

The following is the response to the above request:
{

"_data": {

"int_vlan": [

{

"id": 95,

"int_vlan_routing": {

"_present": true,

"_flags": {

"default": true

}

},

"int_vlan_ndra_hlimit": {

"_flags": {

"default": true

},

"value": 64

},

"int_vlan_ndra_interval": {

"_flags": {

"default": true

},

"value": 600

},

"int_vlan_ndra_ltime": {

"_flags": {

"default": true

},

"value": 1800

},

"int_vlan_ndra_mtu": {

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 28

29 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

"_flags": {

"default": true

},

"value": 1500

},

"int_vlan_nd_reachtime": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_nd_rtrans_time": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_mtu": {

"_flags": {

"default": true

},

"value": 1500

},

"int_vlan_suppress_arp": {

"_present": true,

"_flags": {

"default": true

}

}

},

{

"id": 96,

"int_vlan_ip": {

"dhcp-client": true,

"ipparams": "dhcp_opt"

},

"int_vlan_routing": {

"_present": true,

"_flags": {

"default": true

}

},

"int_vlan_ndra_hlimit": {

"_flags": {

"default": true

},

"value": 64

},

"int_vlan_ndra_interval": {

"_flags": {

"default": true

},

"value": 600

},

"int_vlan_ndra_ltime": {

"_flags": {

"default": true

},

"value": 1800

},

"int_vlan_ndra_mtu": {

"_flags": {

"default": true

},

"value": 1500

},

"int_vlan_nd_reachtime": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_nd_rtrans_time": {

"_flags": {

"default": true

},

"value": 0

},

"int_vlan_mtu": {

"value": 1280

},

"int_vlan_suppress_arp": {

"_present": true,

"_flags": {

"default": true

}

}

}

]

}

}

Data-Type Filters
Data-type filters is just an extension to the BASIC filters and applies to whole data. This specifies what type of
response is required.

The following sample shows theway to specify the type of data requested:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&type=<data-type>&UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

The following table shows the list of various data-types that can be specified in the list (the data-types can be
concatenated using "commas" in between with no spaces):

Data-Type Description

"non-default" Send configuration which is not factory default. It can be system generated or user
configured.

"default" Send only factory default configuration.

"local" Send the configuration done at this particular node by user. It can still be in pending
state or committed— both are present.

Table 10: List of Data-Types

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 30

31 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

Data-Type Description

"user" All configuration done by user (non factory default and non system generated). It can
be done on any node present in this node’s hierarchy (all inherited user configuration
is also present)

"system" A user configurationmay trigger system to internally generate some configurations—
e.g., ACE generation on net-destination use. This type returns all such system
generated configurations. It contains configurationgenerated at this node or higher in
hierarchy.

"pending" Send only the configuration at this node which is not written to memory yet.

"committed" Send only committed configuration at this node. This includes the inherited
configuration.

"inherited" Send all configuration inherited at this node. It includes all user, system, default
configuration which is coming from hierarchy above.

"meta-n-data" Special Flag to indicate that get both metadata and data in the same request. This
cannot be combined with "meta-only"; the two are mutually exclusive.

"meta-only" Special Flag to indicate that only metadata is desired, skip sending any configuration
elements (or data). This cannot be combined with the "meta-n-data" option; the two
are mutually exclusive.

<session-id> Session ID for this session.

Sort
The data from theGET request can be sorted based on a single field (currently, multi-parameter or nested sorts
are not supported). There can only be one sort filter per request.

The following sample shows how to sort:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&sort=<oper><key>&UIDARUBA=<session-id>'

Parameters

Parameters Description

<oper> Shows the order in which you want the output. It can have only two values, "+" for
ascending order and "-" for descending order. If this is not specified, ascending order
is assumed by default.

<key> Key is the parameter name on which sort must be applied. It is always of the form:
<objname>.<param_name> or in case of sub-objs, it should be <objname>.<subobj_
name>.<param_name>

<session-id> Session ID for this session.

Table 11: Sort Parameters

Points to Remember
n If the top-level object ismulti-instance, you can apply filter on any parameter of that object. The following is

an example for ascending order sort:

curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&sort=+int_vlan.id&UIDARUBA=<session-id>'

n If the top-level object ismulti-instance, you can apply filter on any parameter of the sub-object as long as
sub-object is not multi-instance. The following is an example for descending order sort:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&sort=-int_vlan.int_vlan_mtu.value&UIDARUBA=<session-id>'

n If the top-level object ismulti-instance, you can apply filter on any parameter of the sub-object which is
multi-instance as long as only one instance exists for top object (e.g., applying sort on port number of an
ACE for a single session ACL). The following example sorts the "IP Helper ipv4 addresses" of interface vlan
95 object while returning all the sub-objects of "interface vlan 95":
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&sort=-int_vlan.int_vlan_ip_helper.address&filter=[{"int_vlan.id" : { "$eq" : [95] }

}]&UIDARUBA=<session-id>'

Paginate
As the name suggests, paginate slices the data into pages and returns the amount of data the user is interested
in. The following shows a sample paginatemodifier:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&offset=<off>&limit=<lim>&total=<count>&UIDARUBA=<session-id>'

Parameters

Parameters Description

<off> This conveys the number of the entry from which we should start the next data set. For
example, offset value of 21 means that out of all the instances of an object, give me
data from 21st object. Currently, we support <off> value to be multiples of <lim> field
described below + 1. For example, if <lim> is 20, the <off> can take values of 1, 21, 41,
61, 81 etc.

<limit> The maximum number if instances of an object that should be put in a single request.

<count> The total number of instances of that object existing in system at that given
configuration node. It should be set to 0 when first query is done and the count field
specified in the result should be put here (optionally) for subsequent queries.
This is an optional field and is explained below.

<session-id> Session ID for this session.

Table 12: Paginate Parameters

For example, let's assume that there are 260 VLANs configured on a system and you want to query 50 VLANs
at one time. So, for first request, you will set <off> to 1 and <limit> to 50. The query will return first 50 VLANs
to you. Now, for second query, the <off> will be 51 and <count> (which wewould have returned in the first
request) will be set to 260. If before the second request, someone adds a VLAN whichmakes the total number
261, wewill check this number against one in the request which is 260. Since these do not match, wewill send a
"_status" field at the same level as "_meta" and "_data" and it's valuewill be set to "Data Dirty". This indicates
that even though we returned next 50 records, data elementsmay be repeated ormissing (in case someone
deletes one of first 50 VLANs, wewill return from 52nd VLAN the next time as that becomes the new 51st
VLAN).

The last query will return only 10 VLANswhich signals to user that nomore VLANs are available. If user
requests for <off> of 401, no data will be returned as we don't have 400+ VLANs.

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 32

33 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

n If top-level object ismulti-instance andmore than one instance exists in query data, paginatewill apply to it.

n If top-level object ismulti-instance, and you have only one instance in query data, paginatewill run onmulti-
instances of the sub_objects.

n If top-level command is single-instance, paginatewill run onmulti-instance sub_objects only.

The following is a sample paginate request:

Request on Section "vlans", wherewe query for all sub-objs of vlan 97 and any multi-instance subobject (like
int_vlan_ip_helper) should only return 3 total objects:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&offset=1&limit=3&filter=[{"int_vlan.id" : { "$eq" : [97] } }, {"OBJECT" : { "$eq" :

["int_vlan.int_vlan_ip_helper"]}}]&UIDARUBA=<session-id>'

The following is the response to the above request:
{

"_data": {

"int_vlan": [

{

"id": 97,

"int_vlan_ip_helper": [

{

"address": "1.1.1.1"

},

{

"address": "2.1.1.1"

},

{

"address": "3.1.1.1"

}

]

}

]

},

"_status": "Data Dirty",

"_count": {

"int_vlan.int_vlan_ip_helper": 4

}

}

So, you see that the total count of "int_vlan.int_vlan_ip_helper" sub-object is 4 but only 3 records are returned.
The status ismarked "Data Dirty" as we didn't send any <count> in initial request.

COUNT
The count modifier just returns the total count of an object formulti-instance object or formulti-instance sub-
object rather than the actual details of the objects. This is particularly useful when you want to get only the
number of instances in an object rather than the object details. For example, querying for number of ACEs in
an ACL.

The following shows a sample COUNTmodifier:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&count=<count_keys_list>&UIDARUBA=<session-id>'

Parameters

Parameters Description

<count_keys_list> List of fully qualified parameter name for which count operation needs to be
performed.

<session-id> Session ID for this session.

Table 13: Count Modifier Parameters

The following is a sample request on section "vlans", wherewe query for all interface vlans with count modifier
set on int_vlan_ip_helper's address parameter:
curl -b "aruba-cookie" -X GET -i

'https://10.4.248.227:4343/v1/configuration/object/<object>?config_path=<config-

node>&count=int_vlan.int_vlan_ip_helper&filter=[{"OBJECT" : { "$eq" : ["int_vlan.int_vlan_ip_

helper"]}}]&UIDARUBA=<session-id>'

The following is the response of the above request. Notice that int_vlan_ip_helper just has count field inside it
rather than full details of the int_vlan_ip_helper.
{

"_data": {

"int_vlan": [

{

"id": 98,

"int_vlan_ip_helper": {

"_count": 0

}

},

{

"id": 299,

"int_vlan_ip_helper": {

"_count": 2

}

},

{

"id": 97,

"int_vlan_ip_helper": {

"_count": 4

}

}

]

}

Special GET Queries

Configuration Hierarchy
The configuration hierarchy along with all the devices information can be fetched using a specialized query
listed below:
curl -b "aruba-cookie" -X GET -i 'https://<controller-ip>:4343/v1/configuration/object/node_

hierarchy?UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

The following is the response to the above query:

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 34

35 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

{

"name": "/",

"devices": [],

"num_ports": 3,

"device_count": 5,

"childnodes": [

{

"name": "mm",

"devices": [],

"num_ports": 3,

"device_count": 0,

"childnodes": [

{

"name": "mynode",

"devices": [],

"num_ports": 3,

"device_count": 0,

"childnodes": [],

"type": "group"

}

],

"type": "group"

},

{

"name": "md",

"devices": [

{

"name": "first-device",

"longitude": "44",

"mac": "00:11:22:33:44:55",

"num_ports": 8,

"latitude": "33",

"type": "A7008"

},

{

"name": "66:66:66:66:66:66",

"longitude": "",

"mac": "66:66:66:66:66:66",

"num_ports": 4,

"latitude": "",

"type": "A7005"

},

{

"name": "77:77:77:77:77:77",

"longitude": "",

"mac": "77:77:77:77:77:77",

"num_ports": 4,

"latitude": "",

"type": "A7005"

}

],

"num_ports": 4,

"device_count": 5,

"childnodes": [

{

"name": "us",

"devices": [

{

"name": "second-device",

"longitude": "",

"mac": "22:11:22:11:22:11",

"num_ports": 6,

"latitude": "",

"type": "A7210"

}

],

"num_ports": 6,

"device_count": 2,

"childnodes": [

{

"name": "nevada",

"devices": [

{

"name": "11:11:11:33:44:55",

"longitude": "",

"mac": "11:11:11:33:44:55",

"num_ports": 8,

"latitude": "",

"type": "A7008"

}

],

"num_ports": 8,

"device_count": 1,

"childnodes": [],

"type": "group"

}

],

"type": "group"

}

],

"type": "group"

}

],

"type": "root"

}

System Information
SystemAPI is a special query which returns details about the systemon which the query is being sent to. The
API is node-specific. If no path is specified, the query is run for that device and it's data returned.

The following is a sample system information request:
curl -b "aruba-cookie" -X GET -i 'https://<controller-ip>:4343/v1/configuration/object/sys_

info?config_path=<config-node>&UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

The following is the response to the above request:
{

"_global": {

"_version": {

"_image_version": "8.0.0.0-svcs-ctrl",

"_supported_image_version": [

"8.0.0.0-svcs-ctrl"

]

},

"_switch_role": "master",

"_hostname": "User-VM1",

"_model": "ArubaMM",

"_user_info": {

"_role": "root",

"_name": "admin"

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 36

37 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

},

"_clock": {

"clock_set_timezone": {

"minutes": 0,

"name": "PST",

"hours": -8

},

"clock_set_summer_time": null

}

},

"_local": {

"_type": "group",

"_feature": {

"airgroup": "Enabled",

"firewall_visibility": "Disabled",

"firewall_dpi": "Disabled",

"mobility_manager": "Disabled",

"uplink": "Disabled",

"stat_update": "Disabled",

"service_termination": "Disabled"

},

"_hardware": {

"_capabilities": "scm,ipv6_np,wlan,fastethernet,cluster,iapmgr,loopback,dds,intf_

bwm,extifmgr,dns_np,hcm,interface_non_profile_based,platform_lcd_cli,ap-

cdump,airgroup,tunnel,pan_gp,routing_non_profile_based,auth_survivability,openflow_

agent,ip_flow_export,layer2_non_profile_based,jumbo_frames,infra_np,web_cc,intf_

sched,out_of_band_mgmt,l2l3-future,layer2_profile_based,traceoptions_profile_

based,qos_profile_based,stacking,stateless-acl,routing_profile_based,l3auth,interface_

profile_based,l2l3,seamless_logon,lsm,airgroup_app,openflow_controller,nbapi_non_pro-

file_based,ssh,license_profile_based,sc_mon",

"_model": "",

"_name": "",

"_mac": "",

"_port_info": {

"_num_ports": 4

}

},

"_pending": {

"write_mem_reqd": false,

"last_save_time": "--",

"last_save_user": "--",

"last_config_time": "--",

"last_config_user": "--"

},

"_user_info": {

"_permission": "read-write"

}

}

}

Running Show Commands
Any show command can be run using the API model and the JSON responsewill be available for the same.

The following is a sample request for show command:
curl -b "aruba-cookie" -X GET -i 'https://<controller-

ip>:4343/v1/configuration/showcommand?command=show+local-userdb&UIDARUBA=<session-id>'

The --insecure option can be used with the curl command if the certificate of the Mobility Master cannot be
validated.

The following is the response for the above request:

{

"User Summary": [

{

"E-Mail": "test@aruba.com",

"Enabled": "Yes",

"Expiry": null,

"Grantor-Name": "admin",

"Name": "test",

"Password": "aruba123",

"Remote-IP": "0.0.0.0",

"Role": "logon",

"Sponsor-Name": null,

"Status": "Active"

}

],

"_data": [

"User Entries: 1"

],

"_meta": [

"Name",

"Password",

"Role",

"E-Mail",

"Enabled",

"Expiry",

"Status",

"Sponsor-Name",

"Remote-IP",

"Grantor-Name"

]

}

Getting Full Configuration of a Node
Full configuration of a particular configuration node can be queried using APIs. The following is an example:
curl -b "aruba-cookie" -X GET -i 'https://<controller-

ip>:4343/v1/configuration/object/config?config_path=<config-

node>&type=<typ>&UIDARUBA=<session-id>’

The following table shows the values of the <typ> parameter:

Value Description

pending Shows the pending configuration at a node.

committed Shows the committed configuration (including inherited configuration at a node)

local Shows the configuration done only at this node (no inheritance). Also, includes
pending configuration at this node, if any

committed,local Shows committed configuration only at this node only (no inheritance)

Table 14: Values of the <typ> Parameter

The caveat to the pending configuration being shown is that, if the user deletes any configuration which is pending,
it is not seen in this API call. Only added or modified configurations are seen. For seeing deleted configuration, you
have to rely on the show configuration pending command.

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 38

39 | Supported APIs and Components AOS-W 8.3.0.x | API Guide

Action Objects
Action commands are SET requests for which there is no get. The only way to see the configuration is using
show commands. The show command output ismade compatible with JSON.

Handling Write Memory
The following is a samplewritememory request:
curl –b "aruba-cookie" –X POST –i 'https://<controller-ip>:4343/v1/configuration/object/write_

memory?config_path=<config-node>&UIDARUBA=<session-id>' –d "{}"

The following is the response for the above request:
{

"write_memory": {

"_result": {

"status": 0,

"status_str": "Command executed."

}

},

"_global_result": {

"status": 0,

"status_str": "Success"

}

}

The write memory API request should be called via it's ownmessage and no other SET requests for any other
payload should be present in this payload. This is because processing of this object can take time.

Generic Action Object
The following is a sample generic action object request:
curl –b "aruba-cookie" –X POST –i 'https://<controller-

ip>:4343/v1/configuration/object?config_path=<config-node>&UIDARUBA=<session-id>' –d @<set-

payload-file>

The following is an example of the payload file:
{

"local_userdb_add": {

"_action":"modify",

"user-role":"logon",

"name":"test",

"passwd":"aruba123",

"user-email":"test@aruba.com"

}

}

The following is the response for the above request:
{

"local_userdb_add": {

"_action": "modify",

"user-role": "logon",

"name": "test",

"passwd": "aruba123",

"user-email": "test@aruba.com",

"_result": {

"status": 0,

"status_str": "Command executed."

}

},

"_global_result": {

"status": 0,

"status_str": "Success"

}

}

AOS-W 8.3.0.x | API Guide Supported APIs and Components | 40

Chapter 4
Context/Location APIs

Overview
TheNBAPI is part of Analytics and Location Engine (ALE) solution that is integrated with Mobility
Master.

The Analytics and Location Engine supports two types of APIs: a polling-based REST API, and a
publish/subscribe API based on Google Protobuf and ZeroMQ.

Types of Context/Location APIs

Polling APIs
The Representational State Transfer (REST) polling-based API supports HTTPS GET operations by
providing a specific URL for each query. Outputs are displayed in JSON format. The following Polling
APIs are supported by ALE in theMobility Master:

n Access Point API

n Application API

n Building API

n Campus API

n switch API

n Cluster Info API

n Destination API

n Floor API

n GeoFence API

n Location API

n Presence API

n Proximity API

n Station API

n System Information API

n Topology API

n Virtual Access Point API

n WebCC Category API

Formore information on Polling APIs, refer to latest Analytics and Location Engine API Guide.

Starting fromAOS-W 8.0.1.0, authentication and authorization is enabled for REST API. Formore
information, see Login on page 8.

The following example shows the usage of Polling API after login:
curl --insecure -b "aruba-cookie" -i "https://<ip address>/api/v1/context/application"

Publish/Subscribe APIs
The publish/subscribe API is based on theØMQ transport. A subscriber uses ØMQ client libraries to
connect to ALE and receive information fromALE asynchronously. This information is delivered in the
Google Protobuf format. The following publish/subscribe APIs are supported by ALE in theMobility
Master:

n Access Point API

n Access Point State API

n AirMonitor Info API

n Application API

n Building API

n Campus API

n Client URL API

n switch Info API

n Destination API

n Floor API

n GeofenceNotify API

n Location API

n ModemStatistics API

n Presence API

n Proximity API

n Radio API

n Radio Statistics API

n Radio Utilization/Histogram Statistics API

n Station RSSI API

n Security API

n Station API

n Station Statistics API

n State Station API

n WebCC API

n Rogue Info API

n Spectrum Info API

n Uplink Bandwidth API

n Uplink Info API

n Uplink Statistics API

n Uplink WAN Compression API

n Uplink IP Probe Statistics API

n Virtual Access Point (VAP) API

n VAP statistics API

n Visibility Record API

Formore information on publish/subscribe APIs, refer to latest Analytics and Location Engine API Guide.

NBAPI Helper Process
TheNBAPI helper acts as a proxy to collect the feeds of five ALE servers and presents those five feeds
as a single feed from theMobility Master. The advantage of using NBAPI helper is that it creates a
single feed to subscribe to, for devicesmanaged by aMobility Master. However, the location API
information will not be available in theNBAPI helper because the quantity of location API data is very
high and cannot support five ALEs worth of information.

You can set up ALE by following the stepsmentioned below:

1. Add ALE as amanagement server on theMobility Master.

2. Turn on the device location.

3. Enter theMobility Master credentials in to the ALE so that the ALE can performCLI tasks every five
minutes, to verify user counts and other information.

4. Configure theNBAPI helper process to allow the aggregation of non-location API information
directly from theMobility Master.

Configuration
The following command is used to configure andmanageNBAPI helper onMobility Master:
ale-configuration

ale_sta_associated

anonymize

ip <ip-addr> username <uname> password <passwd>

nbapi_publish

The following command is used to configure an ALE IP address with login information. Amaximumof
five ALE IP addresses can be configured on theMobility Master:
(host) [mynode] (config) #ale-configuration

(host) [mynode] (config-submode) # ip <IP address> username <username> password

<password>

The following command is used to configure anonymization on theMobility Master REST API:
(host) [mynode] (config) #ale-configuration

(host) [mynode] (config-submode) #anonymize

The following command is used to enable REST APIs on theMobility Master to publish data available
via ZMQ, including station, virtual AP, AP, radio, RSSI, visibility record, destination. By default, this
parameter is false.
(host) [mynode] (config) #ale-configuration

(host) [mynode] (config-submode) #nbapi_publish

VRRP Support
TheNBAPI helper process supports VRRP. The configuration is synced acrossMobility Master and
managed devices. VRRP has to be configured only in theMobility Master hierarchy.

	Contents
	Revision History

	About this Guide
	Related Documents
	Contacting Support

	Overview of Northbound Configuration APIs
	Introduction
	Structured Data- Schema and Data

	Getting Started
	Prerequisites
	Interface
	Login
	Logout

	Supported APIs and Components
	Query Elements of GET
	GET
	SET
	Multi-part SET
	GET Modifiers
	Special GET Queries
	Action Objects

	Context/Location APIs
	Overview
	Types of Context/Location APIs
	NBAPI Helper Process
	Configuration

